Mathematik

Beispiel für einen Hypothesentest zur Berechnung der Wahrscheinlichkeit

Ein wichtiger Teil der Inferenzstatistik ist das Testen von Hypothesen. Wie beim Erlernen von Mathematik ist es hilfreich, mehrere Beispiele durchzuarbeiten. Im Folgenden wird ein Beispiel für einen Hypothesentest untersucht und die Wahrscheinlichkeit von Fehlern des Typs I und des Typs II berechnet .

Wir gehen davon aus, dass die einfachen Bedingungen gelten. Insbesondere nehmen wir an, dass wir eine einfache Zufallsstichprobe aus einer Population haben, die entweder normal verteilt ist oder eine ausreichend große Stichprobengröße aufweist, um den zentralen Grenzwertsatz anwenden zu können . Wir gehen auch davon aus, dass wir die Populationsstandardabweichung kennen.

 

Problemstellung

Eine Tüte Kartoffelchips ist nach Gewicht verpackt. Insgesamt werden neun Beutel gekauft, gewogen und das Durchschnittsgewicht dieser neun Beutel beträgt 10,5 Unzen. Angenommen, die Standardabweichung der Population aller dieser Säcke mit Chips beträgt 0,6 Unzen. Das angegebene Gewicht auf allen Paketen beträgt 11 Unzen. Stellen Sie ein Signifikanzniveau auf 0,01 ein.

 

Frage 1

Unterstützt die Stichprobe die Hypothese, dass der wahre Populationsmittelwert weniger als 11 Unzen beträgt?

Wir haben einen Test mit niedrigerem Schwanz. Dies geht aus der Aussage unserer Null- und Alternativhypothesen hervor :

  • H 0 : μ=11.
  • H a : μ <11.

Die Teststatistik wird nach der Formel berechnet

z=( x- bar – μ 0 ) / (σ / √ n )=(10,5 – 11) / (0,6 / √ 9)=-0,5 / 0,2=-2,5.

Wir müssen nun bestimmen, wie wahrscheinlich es ist, dass dieser Wert von z allein dem Zufall zuzuschreiben ist. Wenn wir eine Tabelle mit z- Punkten verwenden, sehen wir, dass die Wahrscheinlichkeit, dass z kleiner oder gleich -2,5 ist, 0,0062 beträgt. Da dieser p-Wert kleiner als das Signifikanzniveau ist. lehnen wir die Nullhypothese ab und akzeptieren die Alternativhypothese. Das Durchschnittsgewicht aller Säcke mit Chips beträgt weniger als 11 Unzen.

 

Frage 2

Wie groß ist die Wahrscheinlichkeit eines Fehlers vom Typ I?

Ein Fehler vom Typ I tritt auf, wenn wir eine Nullhypothese ablehnen, die wahr ist. Die Wahrscheinlichkeit eines solchen Fehlers entspricht dem Signifikanzniveau. In diesem Fall haben wir ein Signifikanzniveau von 0,01, dies ist also die Wahrscheinlichkeit eines Fehlers vom Typ I.

 

Frage 3

Wenn der Bevölkerungsdurchschnitt tatsächlich 10,75 Unzen beträgt, wie hoch ist die Wahrscheinlichkeit eines Fehlers vom Typ II?

Wir beginnen mit der Neuformulierung unserer Entscheidungsregel in Bezug auf den Stichprobenmittelwert. Für ein Signifikanzniveau von 0,01 lehnen wir die Nullhypothese ab, wenn z <-2,33 ist. Indem wir diesen Wert in die Formel für die Teststatistik einfügen, lehnen wir die Nullhypothese ab, wenn

( x- bar – 11) / (0,6 / √ 9) <-2,33.

Entsprechend lehnen wir die Nullhypothese ab, wenn 11 – 2,33 (0,2)> x- bar oder wenn x- bar kleiner als 10,534 ist. Wir können die Nullhypothese für x- bar größer oder gleich 10,534 nicht ablehnen . Wenn der wahre Populationsmittelwert 10,75 beträgt, entspricht die Wahrscheinlichkeit, dass x- bar größer oder gleich 10,534 ist, der Wahrscheinlichkeit, dass z größer oder gleich -0,22 ist. Diese Wahrscheinlichkeit, bei der es sich um die Wahrscheinlichkeit eines Fehlers vom Typ II handelt, beträgt 0,587.

Similar Posts

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.