Mathematik

Verwenden der Standardnormalverteilungstabelle

Normalverteilungen treten im gesamten Bereich der Statistik auf. Eine Möglichkeit, Berechnungen mit dieser Art der Verteilung durchzuführen, besteht darin, eine Wertetabelle zu verwenden, die als Standardnormalverteilungstabelle bezeichnet wird. Verwenden Sie diese Tabelle, um schnell die Wahrscheinlichkeit zu berechnen, dass ein Wert unterhalb der Glockenkurve eines bestimmten Datensatzes auftritt, dessen Z-Scores in den Bereich dieser Tabelle fallen.

Die Standardnormalverteilungstabelle ist eine Zusammenstellung von Bereichen aus der Standardnormalverteilung. besser bekannt als Glockenkurve, die den Bereich des Bereichs unter der Glockenkurve und links von einem bestimmten Z- Score zur Darstellung von Wahrscheinlichkeiten von bereitstellt Vorkommen in einer bestimmten Bevölkerung.

Jedes Mal, wenn eine Normalverteilung verwendet wird, kann eine Tabelle wie diese herangezogen werden, um wichtige Berechnungen durchzuführen. Um dies jedoch richtig für Berechnungen zu verwenden, muss man mit dem Wert Ihres Z- Scores beginnen, der auf das nächste Hundertstel gerundet ist. Der nächste Schritt besteht darin, den entsprechenden Eintrag in der Tabelle zu finden, indem Sie die erste Spalte für die Einsen- und Zehntelstellen Ihrer Nummer und in der oberen Reihe die Hundertstelstellen ablesen.

 

Standard-Normalverteilungstabelle

Die folgende Tabelle gibt den Anteil der Standardnormalverteilung links von einem  Z- Score an. Denken Sie daran, dass die Datenwerte links das nächste Zehntel und die Daten oben das Hundertstel darstellen.

 

Verwenden der Tabelle zur Berechnung der Normalverteilung

Um die obige Tabelle richtig verwenden zu können, ist es wichtig zu verstehen, wie sie funktioniert. Nehmen Sie zum Beispiel einen Z-Score von 1,67. Man würde diese Zahl in 1,6 und 0,07 aufteilen, was eine Zahl auf das nächste Zehntel (1,6) und eine auf das nächste Hundertstel (0,07) liefert.

Ein Statistiker würde dann 1.6 in der linken Spalte und dann .07 in der oberen Zeile finden. Diese beiden Werte treffen sich an einem Punkt in der Tabelle und ergeben das Ergebnis von 0,953, das dann als Prozentsatz interpretiert werden kann, der die Fläche unter der Glockenkurve definiert. die links von z=1,67 liegt.

In diesem Fall beträgt die Normalverteilung 95,3 Prozent, da 95,3 Prozent der Fläche unterhalb der Glockenkurve links vom Z-Score von 1,67 liegen.

 

Negative Z-Scores und Proportionen

Die Tabelle kann auch verwendet werden, um die Bereiche links von einem negativen z- Punkt zu finden. Lassen Sie dazu das negative Vorzeichen fallen und suchen Sie nach dem entsprechenden Eintrag in der Tabelle. Subtrahieren Sie nach dem Auffinden des Bereichs 0,5, um die Tatsache auszugleichen, dass z ein negativer Wert ist. Dies funktioniert, weil diese Tabelle symmetrisch zur y- Achse ist.

Eine andere Verwendung dieser Tabelle besteht darin, mit einem Anteil zu beginnen und einen Z-Score zu finden. Zum Beispiel könnten wir nach einer zufällig verteilten Variablen fragen. Welcher Z-Score gibt den Punkt der Top-Ten-Prozent der Verteilung an?

Schauen Sie in die Tabelle und finden Sie den Wert, der 90 Prozent oder 0,9 am nächsten kommt. Dies tritt in der Zeile mit 1,2 und der Spalte mit 0,08 auf. Dies bedeutet, dass wir für z = 1,28 oder mehr die oberen zehn Prozent der Verteilung haben und die anderen 90 Prozent der Verteilung unter 1,28 liegen.

In dieser Situation müssen wir manchmal den Z-Score in eine Zufallsvariable mit einer Normalverteilung ändern. Dafür würden wir die Formel für Z-Scores verwenden .

Similar Posts

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.