Sozialwissenschaften

Ausschlussbeschränkungen in instrumentellen Variablen

In vielen Studienbereichen, einschließlich Statistik und Wirtschaft, stützen sich Forscher auf gültige Ausschlussbeschränkungen, wenn sie die Ergebnisse entweder anhand instrumenteller Variablen (IV) oder exogener Variablen schätzen . Solche Berechnungen werden häufig verwendet, um den kausalen Effekt einer binären Behandlung zu analysieren.

 

Variablen und Ausschlussbeschränkungen

Locker definiert gilt eine Ausschlussbeschränkung als gültig, solange die unabhängigen Variablen die abhängigen Variablen in einer Gleichung nicht direkt beeinflussen. Beispielsweise verlassen sich Forscher auf die Randomisierung der Stichprobenpopulation, um die Vergleichbarkeit zwischen den Behandlungs- und Kontrollgruppen sicherzustellen. Manchmal ist jedoch keine Randomisierung möglich.

Dies kann aus einer Reihe von Gründen geschehen, z. B. mangelnder Zugang zu geeigneten Bevölkerungsgruppen oder Haushaltsbeschränkungen. In solchen Fällen besteht die beste Vorgehensweise oder Strategie darin, sich auf eine instrumentelle Variable zu stützen. Einfach ausgedrückt wird die Methode zur Verwendung instrumenteller Variablen verwendet, um Kausalzusammenhänge abzuschätzen, wenn ein kontrolliertes Experiment oder eine kontrollierte Studie einfach nicht durchführbar ist. Hier kommen gültige Ausschlussbeschränkungen ins Spiel.

Wenn Forscher instrumentelle Variablen verwenden, stützen sie sich auf zwei Hauptannahmen. Das erste ist, dass die ausgeschlossenen Instrumente unabhängig vom Fehlerprozess verteilt werden. Das andere ist, dass die ausgeschlossenen Instrumente ausreichend mit den eingeschlossenen endogenen Regressoren korreliert sind. In der Spezifikation eines IV-Modells heißt es daher, dass die ausgeschlossenen Instrumente die unabhängige Variable nur indirekt beeinflussen.

Infolgedessen werden Ausschlussbeschränkungen als beobachtete Variablen betrachtet, die sich auf die Zuweisung der Behandlung auswirken, jedoch nicht auf das Ergebnis des Interesses, das von der Zuweisung der Behandlung abhängig ist. Wenn andererseits gezeigt wird, dass ein ausgeschlossenes Instrument sowohl direkte als auch indirekte Einflüsse auf die abhängige Variable ausübt, sollte die Ausschlussbeschränkung abgelehnt werden.

 

Die Bedeutung von Ausschlussbeschränkungen

In simultanen Gleichungssystemen oder einem Gleichungssystem sind Ausschlussbeschränkungen kritisch. Das simultane Gleichungssystem ist ein endlicher Satz von Gleichungen, in denen bestimmte Annahmen getroffen werden. Trotz seiner Bedeutung für die Lösung des Gleichungssystems kann die Gültigkeit einer Ausschlussbeschränkung nicht geprüft werden, da die Bedingung einen nicht beobachtbaren Rest beinhaltet.

Ausschlussbeschränkungen werden häufig intuitiv vom Forscher auferlegt, der dann von der Plausibilität dieser Annahmen überzeugen muss, was bedeutet, dass das Publikum den theoretischen Argumenten des Forschers glauben muss, die die Ausschlussbeschränkung unterstützen.

Das Konzept der Ausschlussbeschränkungen zeigt an, dass einige der exogenen Variablen in einigen Gleichungen nicht enthalten sind. Oft wird diese Idee dadurch ausgedrückt, dass der Koeffizient neben dieser exogenen Variablen Null ist. Diese Erklärung kann diese Einschränkung (make – Hypothese. testbar und kann ein gleichzeitiges Gleichungssystem ermittelt werden.

Quellen

Similar Posts

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.