Mathematik

Negative Steigung und negative Korrelation

In der Mathematik beschreibt die Steigung einer Linie. m ), wie schnell oder langsam eine Änderung auftritt und in welche Richtung, ob positiv oder negativ. Lineare Funktionen – solche, deren Graph eine gerade Linie ist – haben vier mögliche Steigungstypen: positiv. negativ, null und undefiniert. Eine Funktion mit einer positiven Steigung wird durch eine Linie dargestellt, die von links nach rechts nach oben verläuft, während eine Funktion mit einer negativen Steigung durch eine Linie dargestellt wird, die von links nach rechts abfällt. Eine Funktion mit einer Steigung von Null wird durch eine horizontale Linie dargestellt, und eine Funktion mit einer undefinierten Steigung wird durch eine vertikale Linie dargestellt.

Die Steigung wird normalerweise als absoluter Wert ausgedrückt . Ein positiver Wert zeigt eine positive Steigung an, während ein negativer Wert eine negative Steigung anzeigt. In der Funktion y=3 x ist beispielsweise die Steigung positiv 3, der Koeffizient von x .

In der Statistik repräsentiert ein Diagramm mit einer negativen Steigung eine negative Korrelation zwischen zwei Variablen. Dies bedeutet, dass mit zunehmender einer Variable die andere abnimmt und umgekehrt. Eine negative Korrelation stellt eine signifikante Beziehung zwischen den Variablen x und y dar , die je nach Modellierung als Eingabe und Ausgabe oder Ursache und Wirkung verstanden werden kann.

 

So finden Sie eine Piste

Die negative Steigung wird wie jede andere Art von Steigung berechnet. Sie können es finden, indem Sie den Anstieg zweier Punkte (die Differenz entlang der vertikalen oder y-Achse) durch den Lauf (die Differenz entlang der x-Achse) dividieren. Denken Sie daran, dass der „Anstieg“ wirklich ein Abfall ist, sodass die resultierende Zahl negativ ist. Die Formel für die Steigung kann wie folgt ausgedrückt werden:

m=(y2 – y1) / (x2 – x1)

Sobald Sie die Linie grafisch dargestellt haben, sehen Sie, dass die Steigung negativ ist, da die Linie von links nach rechts abfällt. Auch ohne Zeichnen eines Diagramms können Sie feststellen, dass die Steigung negativ ist, indem Sie einfach m anhand der für die beiden Punkte angegebenen Werte berechnen . Angenommen, die Steigung einer Linie, die die beiden Punkte (2, -1) und (1,1) enthält, ist:

m=[1 – (-1)] / (1 – 2)

m=(1 + 1) / -1

m=2 / -1

m=-2

Eine Steigung von -2 bedeutet, dass für jede positive Änderung von x doppelt so viel negative Änderung von y vorliegt .

 

Negative Steigung=negative Korrelation

Eine negative Steigung zeigt eine negative Korrelation zwischen den folgenden:

  • Variablen x und y
  • Ein- und Ausgabe
  • Unabhängige Variable und abhängige Variable
  • Ursache und Wirkung

Eine negative Korrelation tritt auf, wenn sich die beiden Variablen einer Funktion in entgegengesetzte Richtungen bewegen. Wenn der Wert von x zunimmt, nimmt der Wert von y ab. Ebenso nimmt der Wert von y zu , wenn der Wert von x abnimmt . Eine negative Korrelation zeigt also eine klare Beziehung zwischen den Variablen an, was bedeutet, dass eine die andere auf sinnvolle Weise beeinflusst.

In einem wissenschaftlichen Experiment würde eine negative Korrelation zeigen, dass eine Zunahme der unabhängigen Variablen (die vom Forscher manipulierte) eine Abnahme der abhängigen Variablen (die vom Forscher gemessene) bewirken würde. Zum Beispiel könnte ein Wissenschaftler feststellen, dass die Anzahl der Beute geringer wird, wenn Raubtiere in eine Umgebung eingeführt werden. Mit anderen Worten, es besteht eine negative Korrelation zwischen der Anzahl der Raubtiere und der Anzahl der Beute.

 

Beispiele aus der Praxis

Ein einfaches Beispiel für eine negative Steigung in der realen Welt ist der Abstieg. Je weiter Sie reisen, desto weiter fallen Sie. Dies kann als mathematische Funktion dargestellt werden, bei der x der zurückgelegten Strecke und y der Höhe entspricht. Andere Beispiele für negative Steigungen zeigen, dass die Beziehung zwischen zwei Variablen Folgendes umfassen könnte:

Herr Nguyen trinkt zwei Stunden vor dem Schlafengehen koffeinhaltigen Kaffee. Je mehr Tassen Kaffee er trinkt (Eingabe), desto weniger Stunden wird er schlafen (Ausgabe).

Aisha kauft ein Flugticket. Je weniger Tage zwischen dem Kaufdatum und dem Abflugdatum (Eingabe) liegen, desto mehr Geld muss Aisha für Flugkosten (Ausgabe) ausgeben.

John gibt einen Teil des Geldes von seinem letzten Gehaltsscheck für Geschenke für seine Kinder aus. Je mehr Geld John ausgibt (Input), desto weniger Geld wird er auf seinem Bankkonto haben (Output).

Mike hat am Ende der Woche eine Prüfung. Leider würde er seine Zeit lieber damit verbringen, Sport im Fernsehen zu schauen, als für den Test zu lernen. Je mehr Zeit Mike damit verbringt, fernzusehen (Eingabe), desto niedriger ist Mikes Punktzahl bei der Prüfung (Ausgabe). (Im Gegensatz dazu würde die Beziehung zwischen der für das Studium aufgewendeten Zeit und dem Prüfungsergebnis durch eine positive Korrelation dargestellt, da eine Zunahme des Studiums zu einem höheren Ergebnis führen würde.)

Similar Posts

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.