Sozialwissenschaften

Den Gini-Koeffizienten verstehen

Der Gini-Koeffizient ist eine numerische Statistik zur Messung der Einkommensungleichheit in einer Gesellschaft. Es wurde Anfang des 20. Jahrhunderts vom italienischen Statistiker und Soziologen Corrado Gini entwickelt.

01 von 05

Die Lorenzkurve

Die Lorenzkurve

Um den Gini-Koeffizienten zu berechnen, ist es wichtig, zunächst die Lorenz-Kurve zu verstehen , die eine grafische Darstellung der Einkommensungleichheit in einer Gesellschaft darstellt. Eine hypothetische Lorenzkurve ist im obigen Diagramm dargestellt.

02 von 05

Berechnung des Gini-Koeffizienten

Berechnung des Gini-Koeffizienten

Sobald eine Lorenz-Kurve erstellt ist, ist die Berechnung des Gini-Koeffizienten ziemlich einfach. Der Gini-Koeffizient ist gleich A / (A + B), wobei A und B wie im obigen Diagramm angegeben sind. (Manchmal wird der Gini-Koeffizient als Prozentsatz oder Index dargestellt. In diesem Fall entspricht er (A / (A + B)) x 100%.)

Wie im Artikel über die Lorenzkurve angegeben, repräsentiert die gerade Linie im Diagramm die perfekte Gleichheit in einer Gesellschaft, und Lorenzkurven, die weiter von dieser diagonalen Linie entfernt sind, repräsentieren ein höheres Maß an Ungleichheit. Daher repräsentieren größere Gini-Koeffizienten ein höheres Maß an Ungleichheit und kleinere Gini-Koeffizienten ein niedrigeres Maß an Ungleichheit (dh ein höheres Maß an Gleichheit).

Um die Flächen der Regionen A und B mathematisch zu berechnen, ist es im Allgemeinen erforderlich, die Flächen unterhalb der Lorenzkurve und zwischen der Lorenzkurve und der Diagonalen mit einem Kalkül zu berechnen.

03 von 05

Eine untere Grenze des Gini-Koeffizienten

Der Gini-Koeffizient

Die Lorenzkurve ist eine diagonale 45-Grad-Linie in Gesellschaften mit perfekter Einkommensgleichheit. Dies liegt einfach daran, dass, wenn jeder den gleichen Geldbetrag verdient, die unteren 10 Prozent der Menschen 10 Prozent des Geldes verdienen. die unteren 27 Prozent der Menschen 27 Prozent des Geldes verdienen und so weiter.

Daher ist der im vorherigen Diagramm mit A bezeichnete Bereich in vollkommen gleichen Gesellschaften gleich Null. Dies impliziert, dass A / (A + B) ebenfalls gleich Null ist, so dass vollkommen gleiche Gesellschaften Gini-Koeffizienten von Null haben.

04 von 05

Eine obere Grenze des Gini-Koeffizienten

Der Gini-Koeffizient

Maximale Ungleichheit in einer Gesellschaft tritt auf, wenn eine Person das gesamte Geld verdient. In dieser Situation ist die Lorenzkurve bis zur rechten Kante auf Null, wo sie einen rechten Winkel bildet und bis zur oberen rechten Ecke reicht. Diese Form tritt einfach deshalb auf, weil, wenn eine Person das gesamte Geld hat, die Gesellschaft null Prozent des Einkommens hat, bis der letzte Mann hinzugefügt wird, und zu diesem Zeitpunkt 100 Prozent des Einkommens hat.

In diesem Fall ist der im vorherigen Diagramm mit B bezeichnete Bereich gleich Null und der Gini-Koeffizient A / (A + B) ist gleich 1 (oder 100%).

05 von 05

Der Gini-Koeffizient

Der Gini-Koeffizient

Im Allgemeinen erfahren Gesellschaften weder eine perfekte Gleichheit noch eine perfekte Ungleichheit, so dass die Gini-Koeffizienten typischerweise irgendwo zwischen 0 und 1 liegen oder zwischen 0 und 100%, wenn sie als Prozentsätze ausgedrückt werden.

Similar Posts

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.